Steam trap including interchangeable body member and insert assembly
A valve body member and various insert assemblies usable with the body member to form steam traps of different types are disclosed in this application. The body member includes an internally threaded,Safety Valves generally cylindrical recess extending inwardly from an outer surface and terminating in an end face, an inlet passage communicating with the recess through a passageway terminating in the end face of the recess, and a discharge passage also communicating with the recess.Needle Valves An annular rib is formed on the end face of the recess around the passageway and includes a surface on which is seated a first sealing ring clamped in place by a first bearing surface of the particular insert assembly used to form the steam trap; WATER POWER CONTROL VALVEan annular seat is formed on the outer surface of the body member around the cylindrical recess and this seat receives a second sealing ring which is clamped in place by a second bearing surface of the insert assembly. All of the insert assemblies further include a threaded portion that cooperates with the internally threaded portion of the recess to retain the insert assembly and the body member in assembled relationship. Certain of the insert assemblies include a plurality of parts which are retained in assembled relationship by a retaining ring arrangement to facilitate assembly and disassembly of the insert assembly, and the body member and all of the insert assemblies are arranged to retain the first sealing ring adjacent the first bearing surface to facilitate removal and insertion of the first sealing ring on the annular rib. Various types of steam traps are utilized to remove condensate and gases from steam lines, the type used in any particular system being dependent on the requirements of the system. The more commonly used steam traps can be classified as thermodynamic traps, operating in response to the difference in the thermodynamic energy available from steam and condensate, or thermostatic traps, operating in response to temperature changes in the steam line. Thermodynamic steam traps generally include a valve body including a seat between inlet and outlet openings and a valve member that cooperates with the seat to allow or prevent flow. The valve member may be of various types, for example, a disc, piston or lever, and rides in a control chamber which receives incoming flow when the valve is open, the pressure developed by the condensate keeping the valve open when no steam is present in the trap. When the temperature of the condensate approaches that of the steam, the condensate flowing to the control chamber experiences a pressure drop which causes "flashing" of the condensate to steam. Rapid expansion of the steam occurs in the control chamber which exerts a force on the valve member causing it to close.
MORE NEWS